New omicron BA.2.75 is as susceptible to antibodies as the currently dominant variant, findings suggest

In May 2022, a new variant of omicron, BA.2.75, was detected, which is driving a wave of infections in India, and has spread internationally. In the last few weeks, BA.2.75 has also been detected in Sweden.

“Identifying how vulnerable the population is, right now, to emerging variants is crucial,” says Daniel Sheward, researcher at the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, and the study’s first author. “By producing a pseudovirus for BA.2.75, we were able to test its sensitivity to antibodies present in blood donors.”

Tests were carried out using 40 random blood samples taken in Stockholm, both before and after the first omicron wave.

“Our study shows that omicron BA.2.75 has approximately the same level of resistance to antibodies as the dominant variant BA.5, which is reassuring news if we were to suffer a BA.2.75 wave in Sweden,” says Ben Murrell, assistant professor at the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, and the study’s senior author.

The researchers from Karolinska Institutet, University of Cape Town, South Africa, ETH Zürich, Switzerland, Karolinska University Hospital, and Imperial College London, Great Britain, have also investigated whether antiviral monoclonal antibodies, which are used clinically to treat already infected patients, lose their effect against omicron BA.2.75, compared to BA.5. Here, too, the researchers found no alarming differences.

Ben Murrell’s lab will continue to monitor new mutations that are arising in omicron sublineages that may undermine vaccines.

The study was funded by the SciLifeLab’s Pandemic Laboratory Preparedness program, the Erling Persson Foundation, the European Union’s Horizon 2020 research and innovation programme. Daniel J. Sheward, Gunilla B. Karlsson Hedestam and Ben Murrell have intellectual property rights associated with antibodies that neutralise omicron variants.

https://www.sciencedaily.com/rss/all.xml