Automated analysis of animal behavior
The technology essentially offers scientists a one-click solution for automatically analysing video footage, however lengthy or detailed the recordings are. Another advantage of the new method is its reproducibility: if different groups of researchers use the same algorithm to analyse their video data, comparing results is easier because everything is based on the same standards. What’s more, the new algorithm is so sensitive that it can even identify subtle behavioural changes that develop very gradually over long periods of time. “Those are the kinds of changes that are often tricky to spot with the human eye,” says Markus Marks, lead author of the research study and a postdoc in the group headed by Professor of Neurotechnology Mehmet Fatih Yanik.
Suitable for all animal species
The researchers trained the machine-learning algorithm with video footage of mice and macaques in captivity. However, they stress that the method can be applied to all animal species. News of their new method has already spread through the scientific community. The ETH researchers have made the algorithm available to other researchers on a public platform, and many of their colleagues around the world are already using it. “Interest has been particularly high among primate researchers, and our technology is already being used by a group that is researching wild chimpanzees in Uganda,” Marks says.
This is probably because the method can also be used to analyse complex social interactions in animal communities, such as identifying which animals groom other members of their group and how often this occurs. “Our method offers some major advantages over previous machine-learning-based behavioural analysis algorithms, especially when it comes to analysing social behaviour in complex settings,” Marks says.
Improving conditions for animals in human care
The new method can also be used to improve animal husbandry, enabling round-the-clock monitoring to automatically single-out abnormal behaviours. By detecting adverse social interactions or the onset of disease early on, keepers can swiftly respond to improve conditionss for the animals in their care.
The ETH researchers are also currently collaborating with Zurich Zoo, which wants to further improve its animal husbandry and conduct automated behavioural research. For example, in a recently published study examining patterns of elephant sleep behaviour, zoo researchers had to manually annotate nocturnal video recordings. Their hope is that the new method would enable them to automate and upscale such findings in the future.
Finally, the method is used in fundamental research in the fields of biology, neurobiology and medicine. “Our method can recognise even subtle or rare behavioural changes in research animals, such as signs of stress, anxiety or discomfort,” says Yanik. “Therefore, it can not only help to improve the quality of animal studies but also helps to reduce the number of animals and the strain on them.” The ETH Zurich professor is planning to use the method himself as part of his neurobiological research in the field of imitation learning.